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My work:
- Specialize in Bayesian ML and probabilistic 

computation
- Studied rocket science, then pivoted to the 

intersection of AI and neuroscience
- Scientist, engineer, founder, angel, advisor, 

consultant

Find me:
t: @theAlexLavin
w: lavin.io
e: lavin@latentsci.com

Intro to Alexander Lavin

mailto:lavin@latentsci.com
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AI solutions that drive human-machine 
synergies. We focus on data-efficient CV and 
NLP, and human-computer collaboration 
methods.

In medicines, Augustus works on machine 
vision for biopharma researchers and cancer 
diagnosis, and personalized medicine 
applications.

Productization of a patent-pending 
Neurodegeneratives Prediction Engine for 
state-of-the-art early prediction of Alzheimer’s 
(with blood-biomarkers).

Latent has worked with industry leading 
pharmacos and biotechs to boost neurodegen 
clinical trials, and is long-term developing a 
personalized medicines product.
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Insitro (Daphne Koller) : in-vitro experiments + AI and 
data generation, to predict what drug developers would see 
in-vivo

Path AI : state-of-the-art CV innovations for more accurate 
histopathology

Tempus : mining everything from genetic sequencing to 
image recognition

Olive : AI platform for automating the healthcare industry's 
most repetitive tasks

Vicarious Surgical : combines virtual reality with 
AI-enabled robots

Cleveland Clinic : distilling trillions of administrative 
and health record data points to personalize healthcare

Johns Hopkins : predictive AI techniques to improve the 
efficiency of patient operational flow
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NN-based survival models

ML research progress Real-world objectives

ITE w/ complex, heterogeneous, longitudinal data

Auto-speech recognition of and topic extraction Digital scribe: auto log notes, free-up doctors, track visits

Pneumonia detection in chest x-ray Interpretable radiology assistant for lung inspection

Learning health knowledge graphs from EMR Self-diagnostic symptom checkers

Counterfactual reasoning courses of treatment Clinical risk prediction, for e.g. ICU optimization
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Medical objectives != ML objective functions

Artificial intelligence := software systems that enable rational decision making under uncertainties

Thus we suggest that ML in medicine requires:

1. ML project lifecycle prioritizes interpretability, practical workflows, and uncertainty reasoning
2. Work with domain experts and medical professionals
3. Implement tight feedback loops externally and internally

Misalignment in medical ML research and real-world solutions
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Diagnosis of the problem : Medical objectives != ML objective functions

Define high-level policy : AI is software systems that enable rational decision making under uncertainties

Coherent actions to execute the strategy: 

1. ML project lifecycle prioritizes interpretability, practical workflows, and uncertainty reasoning
2. Work with domain experts and medical professionals
3. Implement tight feedback loops externally and internally

“Kernel” of medical ML strategy

Rumelt, “Good Strategy Bad Strategy: The Difference and Why It Matters”
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Focus on unsupervised methods

- Labeled medical datasets can be prohibitively expensive
- Often the medical workflow bottleneck is data gathering/munging/labeling
- Expert labels may be incorrect!

- error prone
- qualitative and subjective in complex and heterogeneous diseases

- Inverse relationship between data-efficiency and usability

How?

- Generative models, namely VAE
- Methods that encode domain knowledge, i.e. PGM and PPL
- Also active learning / self-supervised learning (still super difficult!)

Phase 1: ML Research
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Focus on aleatoric + epistemic uncertainties

- Aleatoric uncertainty measures the noise inherent in the observations.
- Epistemic uncertainty accounts for uncertainty in the model itself; i.e. capturing our ignorance about which 

model generated the data.

NNs are often miscalibrated -- i.e. over-confident because ignoring epistemic uncertainty

Probabilistic ML methods offer uncertainty reasoning for free: Gaussian Processes, Bayes NN, BayesOpt 

Phase 1: ML Research
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- Aleatoric uncertainty measures the noise inherent in the observations.
- Epistemic uncertainty accounts for uncertainty in the model itself; i.e. capturing our ignorance about which 

model generated the data.

NNs are often miscalibrated -- i.e. over-confident because ignoring epistemic uncertainty

Probabilistic ML methods offer uncertainty reasoning for free: Gaussian Processes, Bayes NN, BayesOpt 

Phase 1: ML Research

See Mihaela van der Schaar’s AutoProg: 
vanderschaar-lab.com/clinical-support

https://www.vanderschaar-lab.com/clinical-support/
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Focus on model-based interpretability

- Methods that are by definition white-box can be very handy in 
research

- Probabilistic ML (namely probabilistic programming)
- Methods that learn a latent representation/embedding of data 

for visualization (e.g. VAE and 👉)

Neural Net methods struggle here, resort to post-hoc 
interpretation methods… 

Phase 1: ML Research

Poincaré map of C. elegans cell atlas 
(Klimovskaia et al. ‘20).
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Low-level: The ability to explain a model’s behavior, 
answering to an ML engineer, "why did the model 
predict that?"

High-level: The ability to translate a model to business 
objectives, answering in natural language, "why did the 
model predict that?"

Post-hoc interpretation methods: applied after-the-fact, 
e.g. heatmaps and network activation viz. 

Model-based interpretation: the model itself readily 
provides insights into the relationships and structures it 
learns from data

Several notions and abstraction levels of ML interpretability
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Focus on post-hoc interpretability

- Explaining models and predictions at 
a high-level

- Builds trust w/ non-ML experts 
(doctors and patients)

How?

- Modeling decisions that behoove 
these interp methods

- E.g. work with gradient-based and 
perturbation-based methods from 
captum.ai/docs/algorithms

- Dimensionality reduction → medical 
decision tool

Phase 2: prototyping and development

CheXNet (Rajpurkar et al. ‘17) localizes pathologies it identifies using Class 
Activation Maps (Zhou et al. '16), which highlight regions that are most 
important for making a particular pathology classification.

Comparison of various embeddings for a synthetic model of
myeloid progenitors differentiation -- Poincaré on the left, then two 
state-of-art visualization methods. (Klimovskaia et al. ‘20)

https://captum.ai/docs/algorithms
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Focus on testing and feedback loops

- Testing is critical throughout the ML 
project lifecycle, but here it is near 
100% of the efforts

- Monitoring for regressions and data 
distribution shifts

- ML in general and paramount in 
healthcare, need to identify and CI test 
the critical scenarios and data slices

- Testing and deployment flexibility for 
on-prem, hosted, distributed

Phase 3: productizing and deployment

Note that product features like confidence measures and model explanations are easy 
because we prioritized them in research.

Figure from D. Sculley et al. ‘19:  Only a small fraction of real-world ML 
systems are composed of the ML code (small black box in the middle). The 
required surrounding infrastructure is vast and complex.
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For more: Lavin & Renard (2020). Technology Readiness Levels for ML Systems. arXiv: 2006.12497.

A lot we did not touch on… 

ML is one component of a much larger 
integrated system.

Machine learning != Software engineering

Need to consider deployment scenarios 
and constraints earlier in the pipeline:

- Data and other deployment 
constraints

- AI ethics

Approaching ML research for eventual deployment

ML systems impose significant testing requirements on top of existing 
software testing.

https://arxiv.org/abs/2006.12497
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Current CV histopathology methods learn end-to-end with labeled data. 
Doesn’t translate to real-world:

- needs massive labeled data
- specific to a few cancer types (yet there are 100+ of brain cancer subtypes)
- not always justification for the classification
- typically uninterpretable

Misalignment: 
Research objective is classification performance on clean benchmark datasets.
Real-world objective is to identify cancerous tissues to best inform medical professionals.

Computer vision and histopathology
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We instead pursue an unsupervised, interpretable 
method:

- Stereographic Projection Variational Auto-Encoder
- Poincaré ball illustrates learned semantics and 

hierarchy
- samples from latent manifold yield reliable tissue 

images

Why anomaly detection?
- methods generalize, and handle rare, unseen 

classes
- surface the most valuable information for medical 

professionals to make decisions

Unsupervised visual anomaly detection in neuropathology

Naud & Lavin (2020). Manifolds for Unsupervised Visual Anomaly Detection. arxiv.org/abs/2006.11364.

https://arxiv.org/abs/2006.11364
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Unsupervised visual anomaly detection in neuropathology
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Misalignment: 
Research objective is predicting survival, or diagnosing in broad buckets.
Real-world objective is individual-specific pre-symptomatic prediction.

Longitudinal modeling of Alzheimer’s Disease

AD has myriad and unique complexities:
- heterogeneous biological pathways and latent-time processes
- complex temporal patterns; survival is non-linear, features interact, non-stationary states
- onset of disease pathology != onset of symptoms, nor is dementia an absorbing state
- subjective diagnoses and infrequent clinical measures

Typical methods don’t suffice
- Deep learning approaches are too data hungry and black-box → need white-box and data-efficiency
- Need dynamic, active learning 
- Need models that more faithfully represent disease states: i.e. continuous time
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Probabilistic-programmed Gaussian Process models of neurodegeneration

We instead pursue methods and 
representations that enable,

- principled uncertainty reasoning
- unsupervised, data-efficient learning
- flexible modeling: individual-specific, encode 

domain priors
- interpretable system

Probabilistic programming
- generative models to describe biomarker 

progressions: monotonic GPs
- easily encode domain expertise
- uncertainty quantification for free
- PPL are by definition white-box

Top: Alzheimer’s pathological cascade 
of biomarker trajectories, derived 
from ADNI.

Right: Example linear Gaussian model 
in the PPL Turing (Ge et al. ‘18). 
Models expressed as probabilistic 
programs are fundamentally white-box.
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Research is the tip of the iceberg.

Misalignment problem: ML objectives != medical objectives

Working definition of AI: software systems that enable rational decision making under uncertainties.

Action steps: prioritize interpretability, practical workflows, and uncertainty reasoning at different phases of ML 
project lifecycle.

This is non-trivial; assuming ML methods will work out of the box will always fail in medical applications.

Explainability isn’t for understanding, it’s for trust.

Take-home messages
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Thank You

e: lavin@latentsci.com
t: @theAlexLavin
w: lavin.io

mailto:lavin@latentsci.com
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TODO

- ...

References
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Research        Development        Productization        Deployment

TRL 0 

TRL 1 

TRL 2 TRL 3

TRL 4

TRL 5

TRL 6 TRL 7

TRL 8

TRL 9

Proof of Principle (PoP) 
Development

A stage for greenfield 
research.

Brainstorming

Moving from basic 
principles to practical use.

Goal-oriented Research

Active R&D is initiated.
Sound software engineering.
Systems Development

Demonstration in a real scenario.

Proof of Concept (PoC) 
Development 

The R&D to product handoff.
Machine Learning “Capability”

Integrations
Robustification of ML 
modules, specifically 
towards one or more 
use-cases

Application development
ML infrastructure, 
product platform, 
data pipes, security 
protocols

The end of system development.
Flight-ready

Monitoring the current version, 
improving the next.

Deployment

Lavin & Renard. Technology Readiness Levels for Machine Learning Systems. ICML 2020 Workshop on Challenges in Deploying ML Systems. arXiv: 2006.12497.

https://arxiv.org/abs/2006.12497
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TRL Cards

The maturity of each model or algorithm is tracked via TRL cards. This card subset reflects our 
example BO algorithm at TRL 7.

Tool for communicating ML 
technology readiness across all 
internal stakeholders.

Enables inter-team and 
cross-functional communication.

Lower-level and more process-
oriented than other “ML cards”
-- e.g. Google (Mitchell et al. ‘19) and 
Hugging Face.

Standardized “report cards” for 
TRL4ML stage reviews.

Lavin & Renard. Technology Readiness Levels for Machine Learning Systems. ICML 2020 Workshop on Challenges in Deploying ML Systems. arXiv: 2006.12497.

https://arxiv.org/abs/2006.12497

