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Intro to Alexander Lavin

My work:
- Specialize in Bayesian ML and probabilistic
computation
- Studied rocket science, then pivoted to the
intersection of Al and neuroscience
- Scientist, engineer, founder, angel, advisor,
consultant

Find me:
t: @theAlexLavin
w: lavin.io
e: lavin@l|atentsci.com
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Al solutions that drive human-machine
synergies. We focus on data-efficient CV and
NLP, and human-computer collaboration
methods.

In medicines, Augustus works on machine
vision for biopharma researchers and cancer
diagnosis, and personalized medicine
applications.
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Productization of a patent-pending
Neurodegeneratives Prediction Engine for
state-of-the-art early prediction of Alzheimer’s
(with blood-biomarkers).

Latent has worked with industry leading
pharmacos and biotechs to boost neurodegen
clinical trials, and is long-term developing a
personalized medicines product.
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Healthcare Al market expected
to surge from $2.1 to $36.1
billion by 2025

Increasingly large, complex data sets, and a growing
need to reduce increasing costs, are driving market
growth.

Combining Al and biology
could solve drug discovery’s

biggest problems

Editor: Daniel B. Neill, H.J. Heinz I} Machine learning can speed up the creation of new drugs and unlock the
mysteries of major diseases, says Insitro CEO Daphne Koller.

A $3 Trillion Challenge
to Computational
Scientists: Transforming
Healthcare Delivery

Suchi Saria, Johns Hopkins University

Healthcare Al funding hits
new high as sector matures

Insitro (Daphne Koller) : in-vitro experiments + Al and
data generation, to predict what drug developers would see
In-vivo

Path AI : state-of-the-art CV innovations for more accurate
histopathology

Tempus : mining everything from genetic sequencing to
image recognition

Olive : Al platform for automating the healthcare industry's
most repetitive tasks

Vicarious Surgical : combines virtual reality with
Al-enabled robots

Cleveland Clinic: distilling trillions of administrative
and health record data points to personalize healthcare

Johns Hopkins : predictive Al techniques to improve the
efficiency of patient operational flow



ML research progress

Counterfactual reasoning courses of treatment

NN-based survival models

Auto-speech recognition of and topic extraction

Pneumonia detection in chest x-ray

Learning health knowledge graphs from EMR

Real-world objectives

Clinical risk predi
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Misalignment in medical ML research and real-world solutions

Medical objectives != ML objective functions

Artificial intelligence := software systems that enable rational decision making under uncertainties

Thus we suggest that ML in medicine requires:

1. ML project lifecycle prioritizes interpretability, practical workflows, and uncertainty reasoning
2.  Work with domain experts and medical professionals
3. Implement tight feedback loops externally and internally



“Kernel” of medical ML strategy

Diagnosis of the problem : Medical objectives |= ML objective functions

Define high-level policy : Al is software systems that enable rational decision making under uncertainties

Coherent actions to execute the strategy:

1. ML project lifecycle prioritizes interpretability, practical workflows, and uncertainty reasoning
2.  Work with domain experts and medical professionals
3. Implement tight feedback loops externally and internally

Rumelt, “Good Strategy Bad Strategy: The Difference and Why It Matters”
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Phase 1: ML Research

Focus on unsupervised methods

- Labeled medical datasets can be prohibitively expensive
- Often the medical workflow bottleneck is data gathering/munging/labeling
- Expert labels may be incorrect!
- error prone
- qualitative and subjective in complex and heterogeneous diseases
- Inverse relationship between data-efficiency and usability

How?

- Generative models, namely VAE
- Methods that encode domain knowledge, i.e. PGM and PPL
- Also active learning / self-supervised learning (still super difficult!)



Phase 1: ML Research

Focus on aleatoric + epistemic uncertainties

- Aleatoric uncertainty measures the noise inherent in the observations.
- Epistemic uncertainty accounts for uncertainty in the model itself; i.e. capturing our ignorance about which
model generated the data.

NNs are often miscalibrated -- i.e. over-confident because ignoring epistemic uncertainty

Probabilistic ML methods offer uncertainty reasoning for free: Gaussian Processes, Bayes NN, BayesOpt



Phase 1: ML Research

Focus on aleatoric + epistemic uncertainties

- Aleatoric uncertainty measures the noise inherent in the observations.
- Epistemic uncertainty accounts for uncertainty in the model itself; i.e. capturing our ignorance about which
model generated the data.

NNs are often miscalibrated -- i.e. over-confident because ignoring epistemic uncertainty

Probabilistic ML methods offer uncertainty reasoning for free: Gaussian Processes, Bayes NN, BayesOpt

See Mihaela van der Schaar’s AutoProg:
vanderschaar-lab.com/clinical-support



https://www.vanderschaar-lab.com/clinical-support/

Phase 1: ML Research

Focus on model-based interpretability

- Methods that are by definition white-box can be very handy in
research

- Probabilistic ML (namely probabilistic programming)

- Methods that learn a latent representation/embedding of data
for visualization (e.g. VAE and )

Neural Net methods struggle here, resort to post-hoc
interpretation methods...
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Poincaré map of C. elegans cell atlas
(Klimovskaia et al. ‘20).
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Several notions and abstraction levels of ML interpretability

Low-level: The ability to explain a model’s behavior,
answering to an ML engineer, "why did the model
predict that?"

High-level: The ability to translate a model to business
objectives, answering in natural language, "why did the
model predict that?"

Post-hoc interpretation methods: applied after-the-fact,
e.g. heatmaps and network activation viz.

Model-based interpretation: the model itself readily
provides insights into the relationships and structures it
learns from data

Interpreting AI Is More Than Black
And White

@. Alexander Lavin Contributor ®
Al

Any sufficiently advanced technology is indistinguishable from
magic.

Arthur C. Clarke [1]




Phase 2: prototyping and development

Focus on post-hoc interpretability

- Explaining models and predictions at
a high-level
- Builds trust w/ non-ML experts

(doctors and patients)
CheXNet (Rajpurkar et al. ‘17) localizes pathologies it identifies using Class

Activation Maps (Zhou et al. '16), which highlight regions that are most
important for making a particular pathology classification.

How?

- Modeling decisions that behoove
these interp methods

- E.g. work with gradient-based and
perturbation-based methods from
captum.ai/docs/algorithms
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- Dimensionality reduction — medical

decision tool Comparison of various embeddings for a synthetic model of
myeloid progenitors differentiation -- Poincaré on the left, then two
state-of-art visualization methods. (Klimovskaia et al. ‘20) 17
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Phase 3: productizing and deployment

Focus on testing and feedback loops

- Testing is critical throughout the ML

project lifecycle, but here it is near

100% of the efforts _— Machiia
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- ML in general and paramount in o
ature Process
Extraction Management Tools

healthcare, need to identify and Cl test

the critical scenarios and data slices Figure from D. Sculley et al. ‘19: Only a small fraction of real-world ML
_ Testing and deployment ﬂeX|b|I|ty for systems are composed of the ML code (small black box in the middle). The

. . required surrounding infrastructure is vast and complex.
on-prem, hosted, distributed

Note that product features like confidence measures and model explanations are easy
because we prioritized them in research.



Approaching ML research for eventual deployment

A lot we did not touch on...

ML is one component of a much larger
integrated system.

Machine learning != Software engineering

Need to consider deployment scenarios
and constraints earlier in the pipeline:
- Data and other deployment
constraints
- Al ethics
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System
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Traditional System Testing and Monitoring

Data | Data |
Monitoring
] [
ML Infrastructure Model
Tests Tests

‘ Prediction
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Running
System

Code Training

Integration
Tests

System
Monitoring

Unit Tests g

ML-Based System Testing and Monitoring

ML systems impose significant testing requirements on top of existing

software testing.

For more: Lavin & Renard (2020). Technology Readiness Levels for ML Systems. arXiv: 2006.12497.
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Computer vision and histopathology

Current CV histopathology methods learn end-to-end with labeled data.

Doesn't translate to real-world:

- needs massive labeled data
- specific to a few cancer types (yet there are 100+ of brain cancer subtypes)

- not always justification for the classification
- typically uninterpretable

Misalignment:
Research objective is classification performance on clean benchmark datasets.

Real-world objective is to identify cancerous tissues to best inform medical professionals.



Unsupervised visual anomaly detection in neuropathology

We instead pursue an unsupervised, interpretable

method:
- Stereographic Projection Variational Auto-Encoder
- Poincaré ball illustrates learned semantics and
hierarchy
- samples from latent manifold yield reliable tissue
images

Why anomaly detection?
- methods generalize, and handle rare, unseen

classes
- surface the most valuable information for medical
professionals to make decisions
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Naud & Lavin (2020). Manifolds for Unsupervised Visual Anomaly Detection. arxiv.org/abs/2006.11364.



https://arxiv.org/abs/2006.11364

Unsupervised visual anomaly detection in neuropathology

EUCLIDEAN SPACE POINCARE MAP INTERPOLATION / PREDICTION

Manifolds for Unsupervised Visual Anomaly & Stereographic

projection

Detection P

Preserves pairwise
distances and angles

Louise Naud Alexander Lavin
Augustus Intelligence Augustus Intelligence S
New York City, NY 10014 New York City, NY 10014 o
louise.naud@augustusai.com alexander.lavin@augustusai.com >

Linear interpolation approximating the hyperbolic manifold
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Longitudinal modeling of Alzheimer’s Disease

AD has myriad and unique complexities:
- heterogeneous biological pathways and latent-time processes
- complex temporal patterns; survival is non-linear, features interact, non-stationary states
- onset of disease pathology != onset of symptoms, nor is dementia an absorbing state
- subjective diagnoses and infrequent clinical measures

Typical methods don't suffice
- Deep learning approaches are too data hungry and black-box — need white-box and data-efficiency

- Need dynamic, active learning
- Need models that more faithfully represent disease states: i.e. continuous time

Misalignment:
Research objective is predicting survival, or diagnosing in broad buckets.
Real-world objective is individual-specific pre-symptomatic prediction.



Probabilistic-programmed Gaussian Process models of neurodegeneration

We instead pursue methods and
representations that enable,

principled uncertainty reasoning
unsupervised, data-efficient learning

flexible modeling: individual-specific, encode
domain priors

interpretable system

Probabilistic programming

generative models to describe biomarker
progressions: monotonic GPs

easily encode domain expertise
uncertainty quantification for free

PPL are by definition white-box
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Top: Alzheimer’'s pathological cascade
of biomarker trajectories, derived
from ADNI.

Right: Example linear Gaussian model
in the PPL Turing (Ge et al. ‘18).
Models expressed as probabilistic
programs are fundamentally white-box.

@model gdemo(x, y) = begin

#

o]
U
#
X
y

end

Assumptions
~ InverseGamma(2,3)
~ Normal(@,sqrt(oc))
Observations
~ Normal(u, sqrt(o))
~ Normal(u, sqrt(o))
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Take-home messages

Research is the tip of the iceberg.
Misalignment problem: ML objectives |= medical objectives
Working definition of Al: software systems that enable rational decision making under uncertainties.

Action steps: prioritize interpretability, practical workflows, and uncertainty reasoning at different phases of ML
project lifecycle.

This is non-trivial; assuming ML methods will work out of the box will always fail in medical applications.

Explainability isnt for understanding, it's for trust.



Thank You

e: lavin@latentsci.com
t: @theAlexLavin

w: lavin.io
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@ TRL 0

Brainstorming
A stage for greenfield
research.

TRL1 @

Goal-oriented Research

Moving from basic TRL 2
principles to practical use.

TRL 6

Application development

TRL 7

Integrations

LI Robustification of ML ML infrastructure, TRL 8
Machine Learning “Capability” modules, specifically product platform, Flight-ready
The R&D to product handoff. towards one or more data pipes, security The end of system development.
use-cases protocols

Proof of Concept (PoC)

Development
Demonstration in a real scenario.

TRL 4

Deployment

Monitoring the current version,

improving the next.

TRL 3

Proof of Principle (PoP) Systems Development

Development

Sound software engineering.

Active R&D is initiated.

Lavin & Renard. Technology Readiness Levels for Machine Learning Systems. ICML 2020 Workshop on Challenges in Deploying ML Systems. arXiv: 2006.12497. 55
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Tool for communicating ML
technology readiness across all

internal stakeholders.

Enables inter-team and

cross-functional communication.

Lower-level and more process-

oriented than other “ML cards”
-- e.g. Google (Mitchell et al. ‘19) and
Hugging Face.

Standardized “report cards” for

TECHNOLOGY NAME
TRL 7 <link to previous cards>
R&D OWNER/ REVIEWER |A. Lavin / G. Renard
PROD OWNER/ REVIEWER |S. Wozniak / S. Jobs
COMPONENT CODES 1.1,4.2,4.3

Solar Array Optimization v1.0

Applying our multivariate BayesOpt (MVBO) algorithm to the
TL;DR |problem of solar panel configuration optimization, specifically
towards client SolarUS.

Two datasets have been used to train and validate the
system:
Data 1. Pilot dataset provided by SolarUS
2. Simulated datasets (which we derived from
SolarUS data, w/ Gaussian noise); explores add’l
geographic regions and climates

considerations

The datasets do not represent any biases.
Ethics The algorithms have a very low carbon footprint.
Augustus Ethics Checklist has been completed.

Model / alg details

Metrics, results

Caveats, known
edge cases,
recommendations

Key assumptions

Intended use

MVBO runs iterative
optimization over
several surrogate GP
models f1..n, each
representing an
independently modul-
ated portion of the
array field.
Example with n=3 (radians and hours on the x and y axes)
MVBO algorithm converges to solution on opt.
benchmark problems in ~1.0s on 4-core CPU.

Full quantitative reports: < link to experiments wiki >

For the solar array problem we require multi-objective
optimization: maximize energy-gain objective while
minimizing panel-movement, accomplished via Pareto
front optimization. This was stable on 98.8% of
simulated scenarios (full range of solar exposures).

We model solar radiance w/ simple Gaussian noise, and
assume near-perfect actuation of solar panels.

Optimize up to 5 continuous or discrete parameters of
a given device, and a system of up to 40 devices.

TRL4ML stage reviews.

The maturity of each model or algorithm is tracked via TRL cards. This card subset reflects our
example BO algorithm at TRL 7.

Lavin & Renard. Technology Readiness Levels for Machine Learning Systems. ICML 2020 Workshop on Challenges in Deploying ML Systems. arXiv: 2006.12497. S50
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